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Abstract

>0y

The results of this work were presented at the 1982 Satellite
; Data Working Group meeting. This paper describes the application
of similar techniques to RADEC data, pursuant to the implementa-

tion of automated event classification algorithms for AFTAC.

(U) There are several major processing steps that comprise the
operational event classification procedure. The first of these is estab-
lishing a standard, satellite-independent representation for bhang-
meter time histories, which will allow data from various systems to
be processed with a common set of decision algorithms. A resam-
pling scheme selected with this in mind serves as the first stage of
the signal processing package to be described here. The second ele-

! ment is a simple Euclidean distance thresholding process that allows

‘obviously uninteresting’ events to be easily eliminated. Next, unsu-
pervised learning (clustering) methods are applied to the data base
so that the underlying substructure of the class of all non-nuclear
events may be understood. Following this, a means for constructing
a feature space in a relatively small number of dimensions is required.
Here, this is accomplished by the method of Fisher for optimum lin-
ear feature selection. Finally, a Bayes minimum risk decision theo-
retic scheme is designed for final classification of data that have been
transformed into the lower-dimensional feature space.
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Introduction

(S) In this report a method is described for the automated recog-
nition of satellite radiometric waveforms.

3
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~ (U) The methods employed in this report are derived from the
field of statistical pattern recognition. In this section, the basic idea
of approach is explained, since it is different in several respects from
past approaches to the same problem. It is then shown how the
radiometric signature identification problem fits into this framework.
In subsequent sections, the details of the implementation for actual
satellite data are presented, along with an analysis of the performance
of the resulting algorithms. _ _

(U) The basic framework for problems that are solved by statistical
Pattern recognition is shown in Figure 2. It is imagined that there are
a finite number of possibilities that the source can produce on any
Eiven trial of the basjc experiment. These possibilities are usually
called hypotheses, and are denoted Hy, Hy, ...Hy.
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Figure 2 (U)
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The observer is not allowed to see the output of the source directly.
Instead, he obtains an observation which is related to the source out-
put, but which has a random, or stochastic, component to it. This
randomness is introduced by a chance mechanism, or noise process.
The goal of pattern recognition is to design a decision rule that will
map any given observation into a guess as to which of the possible
source hypotheses actually produced the given observation. The best
decision rule will usually be that which produces the fewest number
of incorrect guesses, averaged over all possible observations. The de-
sign of such an optimum rule must take into account a description of
the noise process. Sometimes this will be known from basic physical
principles, but often it must be empirically derived from a controlled
set of observations.

(U) A simple example of a familiar problem that fits easily into
this framework is that of the communication system depicted in Fig-
ure 3. In this case, the source is the sender of a message to a receiver,
which is the observer. There are a variety of messages that the sender
can choose to convey to the receiver, and these messages constitute
the source hypotheses. A different shaped signal that will be trans-
mitted over a communications channel is used to encode each of the
messages. In the real world, all such channels are noisy, in the sense
that they will introduce some amount of random distortion into the
signal as it is being transmitted. This distortion, then, comprises the
noise process of Figure 2. The decision rule in this case would be
a signal Processing scheme that uses samples of the received wave-
form as input, and produces as output the best guess as to which
Inessage was intended by the sender. Again, the exact design of the

_ best (minimum probability of error) rule would necessitate knowing,
either from theoretical considerations or from experimental data, a
‘mathematical description of the noise process.
. (U) The problem of automated (machine) recognition of satellite
radiometric waveforms can readily be addressed in terms of the above
framework. The various Possible source outputs (hypotheses) are the
ifferent kinds of physical events that can produce radiometric signa-
;‘l_res. These events include, to name only a few, lightning bolts, sun
glints from lakes, charged particles impacting on the radiometers, and
,natlcm.s of nuclear devices in the atmosphere. The observation,
urse, is the set of digitized samples from the from the collected
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radiometric signature. The noise process is a complicated collection
of processes that, for example, make different individual lightning
bolts have different signatures at the satellite, and that result in ev-
ery nuclear detonation having a different signature. Thus, some of
what makes up this noise process really represents the observer’s lack
of precise knowledge as to the nature of each physical event, e.g., the
exact design parameters of a nuclear device that was detonated, or
the exact structure of the cloud masses that produced a lightning
bolt. Also contributing to the noise process would be such items as
random distortions introduced into the radiometric waveform by fluc-
tuating atmospheric conditions. A partial list of still other sources
of randomness would include electronic noise in the sensor circuits
and possible errors introduced into the digital data as it is transmit-
ted back to the earth station. The eentral idea of this analysis is to
characterize all of these components of the noise process not from any
theoretical physical considerations, but rather simply from the study
of a large amount of collected satellite radiometric data. This should
be contrasted with most, if not all, past approaches to this problem,
which have attempted to see how theoretical models of nuclear deto-
nations would fit, or fail to fit, observed radiometric collections. The
real disadvantage of such past analyses is that they treated only one
type of event as a valid hypothesis. That is, no other classes of events
except NUDETS were used as possible models for an unknown event.
The weakness in this kind of one-hypothesis approach is that it leads
to statements concerning the observer’s confidence in his assessments
that may not be totally meaningful. This is because one can only state
that a given event appears to be consistent or not consistent, at some
confidence level, with the hypothesis that the event was generated by
a NUDET. But one cannot calculate the a posteriors proability (i.e.,
the conditional probability given the observation) that the event was
generated from a NUDET, unless one has other specific hypotheses
which ean also be evaluated. That is to say, the second of the following
two statements, in the authors’ opinion, is to be greatly preferred: 1)
The unknown event is consistent at the 80 per cent confidence level
‘With the hypothesis that it was generated by a NUDET (but, in fact,
any number of other hypotheses could also be consistent at this or
. even greater level of confidence); and 2) The unknown event is
‘identified as NUDET with 80 per cent probability of correct classifi-
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cation, when the classes of NUDETS, lightning bolts, and zoo events
are considered to be a priori equally likely.

(S) The construction of theoretical models for all possible kinds of
triggers would, of course, be an extremely difficult, if not impossible,
task. It is chiefly for this reason that the authors of this work have

chosen the approach of using empirical data to construct statistical

models for various event classes.
1Ce8 Jor various event classes.
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Statistical Decision Theory Applied to
Radiometric Waveform Classification

A Sensor-Independent Sampling Scheme

(U) The first step in designing a decision theoretic classification
scheme for radiometric waveforms is to design a sampling scheme
that will place data from any one of the several types of bhangmeters
that are currently deployed (or future types that will be deployed) on
some common basis. Various bhangmeters in existing and planned
satellite systems differ considerably in sampling rate, trigger criteria,
and quantization levels. The resampling scheme described below is
logarithmic in both amplitude and time and is scaled relative to a
common trigger level.

e (VERT

Doé
XD

(U) The resampling is performed at the constant logarithmic rate
of eight samples per decade over five decades of time. Since the exact
beginning of the optical time history is unknown, the samples are
arbitrarily shifted in time so that the level-eight threshold crossing
occurs at the 100-microsecond point on the time axis. Two pre-trigger
samples are combined with 40 post-triggger samples to form a 42-
sample representation of the time history. These 42 samples may be
thought of as the components of a 42-dimensional vector representing
the time history. : :
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Pre-Processing to Eliminate Uninteresting Events

(U) The total number of radiometric waveforms collected by the
VELA and RADEC sensors over the past decade is enormous, and
numbers in the hundreds of thousands. A significant portion of these
waveforms are rather uninterestin , in the sense that they were caused

forms caused by nuclear detonations. An example of such a class of
waveforms is that of particle triggers. These events are generated
when certain types of cosmic ray particles impact on the radiomet-
ric sensor element and trigger the system. There is a relatively easy
way to cull out these as well as certain other types of events so that
the job of discriminating between nuclear detonation waveforms and

event to the class of known nuclear events, i.e., the training set of
nuclear events, and then rejecting those events that are sufficiently

only those events which fall inside a hypersphere of radius R. The
figure only shows three dimensions, but should be thought of in the
number of dimensions of the signal vector space. In this case, the
dimension would be 42 (or 84 for two channel concatenated data)
—because of the resampling scheme discussed in the previous section.
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Figure 5 (U)
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Figure 6 (U)
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Clustering to Depict Underlying Substructure of
Non-Nuclear Class

(U) Once a data base of non-nuclear events that are reasonably
close to the class of known nuclear events has been established, it
is important to attempt to understand the substructure these events
may possess. The reason this is important is because it is usually more
difficult to construct a statistical description for a class of events if the
distribution of the events in that class is multimodal, as opposed to
unimodal. For example, a very useful distribution that often fits real—
world problems well is the Gaussian, or normal, distribution, which
is unimodal. When a multimodal distribution can bhe approximately
broken up into component unimodal functions, a set of Gaussian dis-
tributions is often useful in describing the class.

(U) One method for discovering the modes of a multimodal distri-
bution in many dimensions (e.g., 84 dimensions for samples of a pair
of RADEC waveforms) is that of hierarchical clustering. The fun-
damental idea of this technique is depicted in Figure 7. This shows
how data in two dimensions can be grouped by clustering into three
classes, which would seem to be the ‘correct’ substructure for this par-
ticular data set. The clustering algorithm starts by computing the
distance between all possible pairs of data points. It then orders this
list of distances from smallest to largest. Starting with the two sam-
ples for which the inter-sample distance is smallest, the routine links
these two samples into the same cluster. Each such link is denoted
in the figure by a solid line drawn between the corresponding two
points. This kind of linking could proceed until all points are linked
into precisely one large cluster. Clearly, one large cluster would reveal
nothing about data substructure, and so the linking process must be
terminated at some point before this happens. The usual method for
determining when to ceasé linking in this type of clustering is'to exam-
ine the sequence of link—distances as the algorithm proceeds. When a
‘natural’ substructure is approached, the link distance should exhibit
a substantial jump. This is evident from examinination of Figure 7.
Note that the links corresponding to the two dotted lines, which are
merges that should not be performed, represent substantially larger
distances than do the earlier links.
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the features be chosen so that the amount of discriminatory infor-
mation that is thrown away is minimized. The problem is extremely
difficult if all possible forms of maps from M dimensions down to
L dimensions (L < M) are considered. However, R. A. Fisher [2]
demonstrated that if the maps are constrained to be linear, then the
feature selection problem can be solved in closed form. Fisher’s so-
lution involves computing a ratio of a between-class distance to a
within-class distance in the lower—-dimensional space. The particu-
lar linear transformation of the data that mazimizes this ratio is the
desired one. The idea is illustrated in Figure 9 for a case in which
the original data dimensionality is 2, and the desired feature space
is one-dimensional. The linear transformation that would map the
data onto line L, is not very effective since the two—class data are
greatly overlapped. The linear transformation that projects the orig-
inal samples onto line L,, however, is a very effective one, as the
resulting one-dimensional data are well-separated. . —
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RESULTS FROM 2-DMENSIONA, RSHER ANALYSS

Figure 10 (1)
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TABLE I (U)
Classification Error Matrix
Double Events - Two dimensions

Actual | Assigned class:
class: 1 2 3 4 5*
1 490 |782| 0}105| O
2 11| 431 0| 4| 0
3 0] 0| 55| 0| O
4 38| 34| 2|108]| 3
~ 5" 0 0 0 0| 76 |f

* NUDET Class

TABLE II (U)
Classification Error Matrix
Double Events — Four dimensions

Actual | Assigned class:

class: 1 2 3 4 5*
1 1330| O} Of 47| 0O
2 0| 85| 0] 3| o0
3 0| 0] 55| 0 O
4 36| 5| 2|140( O
5* 0| Of O O] 76

* NUDET Class
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TABLE III (U)
Classification Error Matrix
Single Events - Five dimensions

Actual | Assigned class:

class: 1 2 3 4 5 6
1 97| o] o] of121 0
2 0] 57 o of 1 0
3 0] oj110] 1| 2| 32
4 O] 0] 24|775 219 7
5 - 1/ 40] 14| 99]408] 20
6* 0 1| o ol o 94

“NUDET Class.
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